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Attention is drawn to a class of inviscid irrotational flows which satisfy the 
conditions at a time-dependent free surface exactly. The flows are related to 
the ellipsoids of Dirichlet (1860). 

Depending on a parameter P, the cross-section may take the form of a variable 
ellipse (P < 0 ) ,  a hyperbola (P > 0) or apair ofparallellines (P = 0). The elliptical 
case was investigated both theoretically and experimentally by Taylor (1960). 
The hyperbolic case (P > 0) is remarkable in that the flow develops a singularity 
when the angle between the asymptotes approaches a right-angle. It is suggested 
that this solution represents a possible instability near the crest of a standing 
gravity wave of large amplitude. 

In  the intermediate case (P = 0) the solution describes an open-channel flow 
in which the fluid filaments are stretched uniformly in a horizontal direction. 
The latter flow is demonstrated experimentally. 

1. Introduction 
Exact solutions of the time-dependent equations of motion for a non-viscous 

fluid with a free surface are quite rare. One class of motions known since the 
last century is the ellipsoids of Dirichlet (1860), in which a rotating, gravitating 
mass of fluid, of constant density and vorticity, is contained within a closed 
ellipsoidal surface, which deforms continuously with time. The solution of the 
three-dimensional problem has been derived concisely by Lamb (1932, 0 382). 

A two-dimensional form of these motions was rediscovered by Taylor (1960) 
in the course of an experimental and theoretical study of the form of a jet issuing 
from an elliptical orifice. 

More recently the present author (1969), who was interested in the form of 
a standing gravity wave of maximum amplitude, inadvertently discovered 
a hyperbolic form of the same solution. Unlike the elliptical case, however, the 
hyperbolic solution shows the interesting feature of a pressure singularity, or 
shock, at the instant when the angle between the asymptotes becomes equal 
to a right-angle. Though not necessarily describing the limiting form of a standing 
gravity wave, the hyperbolic solution may very well describe an instability near 
the wave crest, or the time-dependent behaviour of a jet impinging on a plane 
wall. 

It is the description of the hyperbolic flow which is the main purpose of the 
present paper. Section 2 outlines a general approach to the problem of time- 

34 F L M  55 



530 M .  S. Longuet-Higgins 

dependent free-surface flows. The most general two-dimensional solution with 
constant rate of strain is derived in $3 .  It is seen to depend upon two dimension- 
less parameters P and &, governing respectively the time and length scales of 
the motion. The elliptical case ( P  < 0 )  is described in $4, in a form rather 
different from that given by Taylor (1960). The description of the hyperbolic 
case is given in 3 5, followed by a discussion of its applicability to the standing 
wave. 

The intermediate case (P = 0) is also of interest ($  6). This describes a flow 
bounded by two parallel plane surfaces, which approach one another. The 
intervening fluid is ejected in such a way that any given particle travels outwards 
with constant velocity. The flow is related to a well-known open-channel flow 
but is exact, not being dependent on the shallow-water approximation or the 
hydrostatic assumption. The flow is verified in a. simple experiment, described 
in $8. 

2. The general problem 
We seek a potential q5(x, y, t, z )  satisfying Laplace’s equation 

v2q5 = 0, (2.1) 

and a pressure function p ( x ,  y, z, t )  related to qi by Bernoulli’s theorem: 

where V is the gravitational potential, so that there exists a free surface on 
which the pressure vanishes: 

p = 0. (2.3) 

Since the surface moves with the fluid we must have also 

on the same surface. An arbitrary function of the time, which is sometimes added 
to ( 2 . 2 ) ,  is considered as being absorbed into q5. 

3. A two-dimensional, gravity-free solution 

Let us write = $A(x2 - @) - J f d t ,  (3.1) 

where A and f are functions of the time, to be determined. The components u 
and v of the velocity in the x and y directions are given by 

u = A ~ ,  v = - A y .  (3.2) 

This is a simple, two-dimensional shear flow, as illustrated in figure 1. The flow 
is symmetrical about both the x axis and the y axis, the instantaneous streamlines 
being rectangular hyperbolae. The instantaneous streamlines in this particular 
flow coincide with the particle trajectories. 
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FIGURE 1. The pattern of streamlines corresponding to the velocity potential 
of equation (3.1), when A > 0. (When A < 0 the flow is reversed.) 

Gravity being neglected, we may write V = 0 in (2 .2) ,  80 that the pressure p 
is given by 

where a dot denotes partial differentiation with respect to t. Hence the rate of 
change o f p  following the motion is given by 

p / p  = - I t (A+A2)~z+f (A-A2)YZ+f ,  (3 .3 )  

p D t  I D p  = - ~ ( ~ ' + 4 ~ ~ + 2 ~ 3 ) ~ 2 ( ; 2 + ( ~ - 4 ~ ~ + 2 ~ 3 ) y 2 + f .  ( 3 . 4 )  

If p = 0 and Dp/Dt = 0 are to represent the same surface, the corresponding 
terms in (3 .3 )  and (3 .4 )  must be proportional. So we must have 

A ' + 4 A A + 2 A 3  A ' - 4 A A + 2 A 3  f 
(3.5) - - - 

- ? A + A ~  A - A  
The terms in A alone give 

Multiplying each side by 2AfAg and integrating we obtain 

AA:-aA'+ZA* = 0. 

A 2  1 _-_-  
A8 A 4 - P 9  

a constant, so that A2 = 4 1   PA^). 

( 3 . 7 )  

( 3 . 8 )  
34-2 
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Hence 
dA 

(3.9) 

Now each ratio in (3.5) is equal to the ratio of the diflerences of any pair of 
numerators to the differences of the denominators. Thus we have 

f / f  = 4AA/A2 = 4A/A, (3.10) 

which has the solution f = $&A4, (3.11) 
where Q is a constant. 

Hence altogether from (3.3) 

2p/p = - ( A  + A2) x2 + ( A  - A2) y2 + &A4, (3.12) 

the function A(t)  being given inversely by (3.9). The free surface p = 0 is an 
ellipse or a hyperbola according as the coefficients of x2 and y2 are of the same or 
opposite sign, that is according as 

A4i5A2, 3‘20. (3.13) 

We shall take these two cases separately. 

4. The elliptical case (P < 0 )  

Write ( -P) i  = 2M > 0, 

so that when 0 < M A  -= 1 equation (3.9) becomes 

dA 
A2( 1 - M4A4)* ’ 

the constant of integration being suitably chosen. The substitution 

(4.3) M A  = cosa (0 < a < *n) 

leads to 

This integral may be expressed in terms of the Legendre elliptic integrals 

(4.4) 

tabulated, for example, by Byrd & Priedman (1954). In fact 

t = 2HM[tana (1 - 8 sin2 a)4 - E(a, 24) + +E’(a, 24)l. (4.6) 
Using a as a parameter, A may now be plotted as a function oft as in figuie 2, 

for fixed values of N .  When t < 0 the solution found by reflexion in the line 
t = 0 is analytically continuous with the solution for t > 0. The limiting case 
M = 0, however, requires special treatment (see below). In  general A attains 
a maximum value M-l at time t = 0, as can be seen also from (4.2). When on the 
other hand t -+ 00 then A -+ 0, and from (4.2) A N t-1. 
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FIGURE 2 .  The function A(t)  when P c 0, giving the velocity a t  a fixed point as a function 
of the time t .  Only the curves for A > 0 are shown. Those for A < 0 are obtained by 
reflexion in the t axis. 

FIGURE 3. Successive configurations of the free surface when P < 0 (and A > 0). 
The shading shows the regions where the pressure is positive. 

Between t = 5 03 the sign of A remains the same (positive in figure 2), so that 
the flow at any given point remains constant in direction. The curve of A ( t )  
has points of inflexion ( A  = 0) where PA4 = - Q, that is to say where 

M A  = 2 4  = 0.8409 ... . (4.7) 
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The free surface p = 0 may be written in the usual form for an ellipse: 

where a and b are the lengths of the semi-axes, given by 

Since A2 > 
positive. Also from (4.9) we have 

I by (3.13) it is clear that for a real free surface to exist Q must be 

(4.10) 

by the differential equation (3.8). Hence the product of the semi-axes of the 
ellipse is equal to ( -  Q/P)*, a constant, as we would expect from continuity, 
nab being equal to the cross-sectional area. 

We also have 

(4.11) 

and so if A is expressed in terms of A ,  

according as t 20.  When t = 0, then a and b are both equal to Ql/M, and the 
cross-section is circular. When t > 0 the ellipse is elongated in the x direction 
and when t < 0 it is elongated in the y direction, as shown in figure 3. 

It will be seen from (3.12) that the pressure p is a maximum at the centre of 
the ellipse, at which point the velocity is zero, and that in general the pressure 
increases towards the centre. This suggests that the flow may be stable provided 
that the fluid is contained within the ellipse. The corresponding flow for ail 
elliptical cavity, when the fluid is outside the ellipse, is probably unstable. 

A further property of the flow is that all surfaces of constant pressure (p = p,,) 
are similar to the free surface p = 0, but that these do not move with the fluid 
unless we assume that p,, is not constant but varies in time like A4. 

The pressure a t  the centre of the ellipse (x, y) = ( 0 , O )  is given by 

PIP = &&A4. (4.13) 

This was compared by Taylor (1960) with the pressure measured a t  the centre 
of a jet issuing from an elliptical orifice in a vertical wall, with very good agree- 
ment (see Taylor 1960, figure 5). 

Taylor’s derivation of (4.13) differs from the onegiven here, the time dependence 
being expressed in the form of an integral, which is then expanded as an infinite 
series. It may be noted that the infinite series 

f ...) 1 1  1 I--+---  
2 . 3  8 . 7  16 .11  
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which is summed numerically by Taylor is equal to 

2E(Bm) - K(&r), 

where E and K are complete elliptic integrals. 

5. The hyperbolic case (P  > 0) 

Writing now Pi = N > 0, 

the constant of integration again being suitably chosen. The substitution 

reduces (5.2) to 

N A  = cot (3p) 

and hence 

t = +N[tan(&3)(1-*sin2p)4-E(/3, 1/2*)+3F(P, 1/24)], 

where E and F are given by (4.5). 

I I I I I I 

0 1 - 3 7 
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(5.5) 

FIGURE 4. The function A when P > 0, giving the velocity at  a fixed point as a function 
oft .  The curves for A < 0 and t < 0 may be obtained by reflexion in the axes. 
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As before, A may now be plotted as a function of t  (see figure 4). The curves 
for A > 0, t > 0 may be extended by reflexion in either the t axis or the A axis. 
A new feature, which did not appear in figure 2, is the presence of a singularity 
at t = 0. In  the neighbourhood of this point we have from (5.2) 

t N _+ (3N2A3)-1, N A  - 2 (N/3t)*. (5.6) 

Thus the velocity (except at x = y = 0) becomes infinite like t-4 and the pressure 
(except at  the free surface) like t-4. The diispZucement near t = 0 is like the integral 
of the velocity and remains finite. 

As we saw earlier, the cross-section of the free surface is a hyperbola, given by 

( A  + A2) x2 - ( A  - A2)  y2 = &A4. (5.7) 

Since in this case A2 > A4 it follows that the coefficients of x2 and y2 have the 
same signs as A and - A respectively. We may distinguish three cases as follows. 

Case 1: Q > 0 

Then if A > 0 the form of the free surface is as shown in figure 5 (a),  the shaded 
area indicating the region where the pressure is positive. The angle which the 
asymptotes make with the x axis, namely 

a = arc tan rs)', 
is greater than 45'. The angle decreases or increases according as ABO. The 
semi-axis a of the hyperbola is given by 

a2 = &A4/@ + A2) .  (5.9) 

As t + 0 we have asymptotically 

a2 N QA4/A N QIP'. (5.10) 

If, on the other hand, A < 0 the form of the free surface is as shown in figure 5 ( b ) .  
The angle a is less than 45', and the semi-axis b is given by 

b2 = QA4/( - A  + A 2 ) .  (5.11) 

Basically (and in the absence of gravity) the configuration is the same as in 
figure 5(a)  but turned through a right-angle. 

Case 2: Q < 0 

Then if A > 0 the form of the free surface is as in figure 6 (a),  the angle a being 
greater than 45'. The shading shows the region of positive pressure. If A < 0 
the configuration is as in figure 6 (b).  

Case 3: Q = 0 

In this case the free surface reduces to two planes making equal angles _+ a with 
the x axis. If A > O the configuration is as in figure 7 ( a ) ,  and if A < 0 as in 
figure 7 (b).  
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FIGURE 6. The form of the free surface when P > 0 and Q < 0. (a) .d > 0, (b)  .d < 0. 

In  the hyperbolic solutions just found, both pressure and velocity become 
large at infinity. Hence these are essentially local solutions, which may never- 
theless describe the local behaviour of some realizable flows. For example the 
solution of figure 5(u) may describe the time-dependent behaviour of a jet 
impinging on a plane surface (y = 0). The flow of figure 6 may partially describe 
the collapse of a mound of fluid under gravity. In each case the existence of 
a singularity at  a = 45" is very interesting. It appears that as this angle is 
approached a weak shock will occur and that the pressure gradient will change 
sign. Thus the configuration of figure 5 (a )  will go over into the configuration of 
figure 6 ( b )  (and that of figure 6 ( a )  into that of figure 5 ( b ) ) .  Where the pressure 
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FIGURE 7. The form of the free surface when P > 0 and Q = 0. (a) A > 0, ( b )  A < 0. 

was previously positive it now becomes negative, and a flow that was stable 
becomes suddenly unstable. 

It is natural to consider how these solutions are related to the problem of the 
limiting form of a standing gravity wave of maximum amplitude. Penney 6 
Price (1952) showed that at  the instant of maximum elevation the acceleration 
at  the crest of a standing wave is equal to g, directed downwards. Thus the fluid 
near the crest is in a state of almost free fall. Penney & Price suggested on 
theoretical grounds that the limiting slope at the crest should be 45". These 
authors' arguments were not accepted by Taylor (1953), who nevertheless showed 
experimentally that the maximum slope was indeed very close to 45". However, 
the occurrence of instabilities near the crest made the precise observation of the 
maximum angle rather difficult. 

Since the hyperbolic solution described above has a singularity at  t = 0, a t  
which the velocity becomes infinite, it evidently does not describe the motion in 
a smooth standing wave. Nevertheless, since the fluid near the crest is in a state 
of almost free fall, the flows of figures 5 ( b )  and 7 ( b )  (in the regionp < 0) may well 
represent possible instabilities that could occur near the instant of maximum 
elevation. 

6. The intermediate case ( P  = 0) 

In  this special case (3.9) becomes 

t = ~f: l/A. (6.1) 

t = 1/A (6.2) 

Let us suppose, without loss of generality, that A > 0. Then we have two 
possibilities. If 

we have from (3.12) 

Then the free surface p = 0 is given by 

lyl = (*&)W. 
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The flow is contained between two planes parallel to the x axis, which come 
together with velocity (see figure 8 ( b ) ) .  The pressure on the x axis is 
proportional to t-4. Hence as t -+ 0 the pressure becomes very large, as a greater 
and greater thickness of fluid has to be accelerated outwards. 

The second possibility, when t = - 1/A > 0, is essentially the reverse of the 
first; the fluid is contained between two lines parallel to the y axis (figure 8 (a) ) .  

A paradoxical feature of the flow described by (6.2)-(6.4) is that although 
the horizontal pressure gradient is zero the horizontal velocity u given by (3.2) 
appears at  first sight to be decelerating (since A cc t-l). The paradox is resolved 
by recognizing the difference between the Eulerian acceleration au/at and the 
Lagrangian acceleration DulDt. In  fact any marked particle moves outwards 
with constant horizontal velocity u (though with steadily diminishing vertical 
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velocity v), so that the horizontal component of the Lagrangian acceleration 
vanishes everywhere. 

The flow is such that when t is small all particles start from the neighbourhood 
of the line x = 0. As t increases, an observer a t  a fixed point sees first the swiftest 
particles, since they arrive first, then particles with gradually slower and slower 
velocities. Hence to a fixed observer the velocity appears to be decreasing in 
time. The flow is analogous to an expanding universe. 

An experiment to test the reality of this flow will be described in 0 8. 
The flow will be recognized as being related to a well-known channel flow, 

based on the nonlinear shallow-water theory in which vertical accelerations are 
neglected (see, for example, Porchheimer 1930). The present solution is however 
exact, and is independent of the shallow-water approximation. 

7. Particle trajectories 
The Lagrangian description of the class of flows described in this paper is 

almost as simple as the Eulerian. Thus let ( X ,  Y )  denote the co-ordinates of 
a fixed particle, functions of the time t and of the initial positions (X,, &) of the 
particle at time to. Then corresponding to the flow described by (3.1) we have 

(7.1) 
a x p t  = a = a4lax = A X  = A X ,  

a q a t  = v = a#/ay = -AY = - A Y ,  

and so - -A( t ) .  
1 d Y  

A( t ) ,  -- - 1 ax 
xdt = Y at 

Hence X = X,F(t), Y = Y,/F(t), 

where (7.4) 

It can be shown directly that an expression of the general form (7.3) satisfies the 
Lagrangian equations of continuity and of motion, and that the pressure is 
constant on a free surface of elliptical cross-section provided that 

h being a constant related to the axes of the ellipse. 
The special flow described in $ 6  corresponds to 

F P  = AF-1dz(F-1)/dt2, (7.5) 

A = l / t ,  P = t,/t. (7.6) 

p = &(h$- Y$)  t gp ,  
The pressure in this case is given by 

where h, denotes the total depth of water a t  time to. 

8. Experimental verification 
In  order to neutralize the effects of gravity on these free-surface flows there 

are at least three experimental alternatives. 
(1) The experiments may be conducted under conditions of free fall. This was 

in effect the method adopted by Taylor (1960), who replaced the time variation 
by a gradual space variation, in a free nearly two-dimensional jet. 
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FIGTJRE 9. Sketch of apparatus to generate the free-surface flow corresponding to Q = 0. 

(2) The experiments may be conducted at high speed or on a small scale, so 
as to  increase the Froude number and reduce the effective value of g. A limit to 
the reduction in scale is set by surface tension. Thus high speed appears the more 
promising. 

(3) In  some configurations gravity may be counterbalanced by a hydrostatic 
pressure gradient. For this to be possible the free surface must be horizontal. 
The only instance is when P = 0 ($ A). 

This suggested the following simple experiment. 
Let a rectangular tank be fitted with a movable block, which initially is near 

one end of the tank, as in figure 9. Let the space between the block and that end 
of the tank be filled with a volume Q of water initially a t  rest. At time to let the 
block be quickly accelerated to a uniform velocity U ,  say, along the tank. The 
water should then follow the plunger in such a way that the free surface remains 
horizontal and the depth of water in the tank is given by 

h = Q/Ut .  (8.1) 

u = ux/x*, (8.2) 

The horizontal component of velocity in the tank will be given by 

where x is the distance from one end of the tank and xB = Ut is the distance 
through which the block has travelled. Thus we have zc = Ax as in (3.2), since 

Any other motion of the plunger will cause a tilting of the free surface -for 
example if the plunger is accelerated or decelerated, or if it  is suddenly removed 
altogether as in the collapse of a dam. Such flows will invite specifically gravita- 
tional effects. 

Figure I0 (plates I and 2) shows the realization of such an experiment in 
a rectangular tank of height I8 in., width 104 in. and total length 12 f t  2 in. The 
block, which moves from right to left, is in the form of a trolley running on 
rubber wheels. Attached to the rear of the trolley is a vertical sheet of plywood, 

A = I / t .  
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sealed to the floor and side walls of the tank by a thin rubber sheet. Attached to the 
front of the trolley is a sponge-rubber buffer and a horizontal steel cable, which 
in turn is attached to an electric motor, as in figure 9. When the trolley reaches 
the far end of the tank the clutch is automatically released and the trolley comes 
to an abrupt halt. The trolley also carried two bricks whose weight helped to 
seal the lower edge of the rubber sheet to the floor of the tank. 

At the start of the experiment the trolley was held in position by a long pole 
(whose shadow on the rear wall is visible to the left of the trolley in figure 10) 
while the space to the right of the trolley was filled with dyed water, to a height 
of 14in. At the word ‘go’ the pole was released and the clutch of the motor was 
engaged. The trolley quickly accelerated to an almost uniform speed of about 
1*5ft/s. The sequence of photographs in figure 10 was taken with a cine camera 
running a t  64 frame+. A selection of fiames is shown, the serial numbers of 
each frame being given on the right. 

It can be seen that, a t  the start of the run, the initial acceleration of the trolley 
produces a tilt of the free surface, and hence an incipient wave (figures 10 (u)-(c), 
plate 1). But as the motion of the trolley becomes more uniform the wave is 
damped out and the surface becomeslevel to aremarkabledegree (figures lO(h)-(j), 
plate 2). 

On reaching the far end of the tank the trolley comes to a halt and water begins 
to pile up against the rear face of the trolley (figures lO(k) and (Z), plate 2). 
Fluid is then thrown back (figures 10 (m) and (n), plate 2) on top of the horizontal 
stream, which continues to flow from right to left and to diminish in depth. 
At  this stage, and indeed after about figure lO(e) (plate 1), the horizontal flow is 
supercritical, that is to say the velocity u exceeds (gh) t ,  and hence the oncoming 
stream remains unaffected by the return flow. At a later stage (not shown in 
figure 10) a bore is formed travelling from left to right. Ultimately, viscosity and 
turbulence damp the flow, but in the short time corresponding to figures 10 (u)-(n), 
the thickness of the boundary layer, given by (m$, is of order 1 mm, and so can 
be neglected. 

In principle it is possible to reverse the experiment and to compress the 
fluid by forcing the plunger in the opposite direction (towards the fixed end) 
still maintaining a horizontal free surface. But in practice the required initial 
flow would be difficult to establish. Any irregularity of the free surface would 
cause wave motion, and the horizontal contraction of the fluid by the plunger 
would then tend to increase the wave amplitude through work done against the 
radiation stresses (see Longuet-Higgins & Stewart 1961; Taylor 1962). 

When, on the other hand, the plunger moves uway from the fixed end, any 
unwanted disturbance of the free surface tends to be reduced. 

Dr J. S. Turner kindly assisted me with the experiments described in Q 8. I am 
indebted to Sir Geoffrey Taylor for interesting discussions. 
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